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Abstract

Evaluating the selection of content in a summary is impor-
tant both for human-written summaries, which can be a useful
pedagogical tool for reading and writing skills, and machine-
generated summaries, which are increasingly being deployed
in information management. The pyramid method assesses a
summary by aggregating content units from the summaries
of a wise crowd (a form of crowdsourcing). It has proven
highly reliable but has largely depended on manual annota-
tion. We propose PEAK, the first method to automatically
assess summary content using the pyramid method that also
generates the pyramid content models. PEAK relies on open
information extraction and graph algorithms. The resulting
scores correlate well with manually derived pyramid scores
on both human and machine summaries, opening up the pos-
sibility of wide-spread use in numerous applications.

1 Introduction
The capability to summarize one or more documents is a
vital skill for people, and a significant research goal in nat-
ural language processing (NLP). Summarization is impor-
tant in education, as it has been found to be one of the
best instruction strategies to improve students’ reading and
writing skills (Graham and Perin 2007). The importance of
automated summarization is reflected in the rate of papers
on summarization at four major NLP conferences (ACL,
EACL, EMNLP and NAACL) over the past six years, which
has consistently been around 5% of the total. Reliable as-
sessment of summaries is therefore beneficial both for peo-
ple learning to summarize, and for progress in automated
summarization methods. A defining characteristic of a sum-
mary is that it should condense the source text, retain im-
portant information, and avoid redundancy. Thus content as-
sessment is critical. This paper presents a method to au-
tomate a pre-existing summary content assessment tech-
nique called the Pyramid method (Nenkova, Passonneau,
and McKeown 2007), that was developed to evaluate ab-
stractive summarization (where the source text is rewritten),
that has often been used to evaluate extractive summarizers
(where source sentences are selected verbatim), and that has
been applied to student summaries.
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ROUGE (Lin and Hovy 2004) is widely used to assess
content selection of automated summarizers (Nenkova and
McKeown 2011; Gupta and Lehal 2007) because it is fully
automated, easy to use, and evaluation of sets of summaries
correlates well with human scores. It is often supplemented
with pyramid scores due to their greater reliability and better
diagnostic properties (Nenkova and McKeown 2011). Since
human-written summaries typically share some content, but
are unlikely to have identical content, both methods compare
each assessed summary to a set of multiple reference sum-
maries written by humans. ROUGE compares n-grams from
the target summaries to the reference summaries and com-
putes a recall measure. It cannot capture similarity of mean-
ing when there is little lexical overlap, and cannot recognize
when lexical overlap does not correspond to similar mean-
ing. The pyramid method not only avoids these problems,
but also distinguishes levels of importance among content
through a wisdom-of-the-crowd method that is inherently
semantic and pragmatic. When assessing individual sum-
maries, ROUGE scores are not accurate (Louis and Nenkova
2009), while pyramid scores provide accurate and diagnos-
tically valuable scores. Application of the method has, how-
ever, largely depended on manual annotation.

The pyramid method relies on an emergent importance
weighting. Annotators identify content that recurs across a
set of human-written reference summaries and create clus-
ters of similar phrases to represent Summary Content Units
(SCU). Each SCU must have no more than one contribu-
tion from each reference summary.1 Each SCU, which is
given a mnemonic label by the annotators, then has a weight
corresponding to the number of contributing reference sum-
maries to represent the relative importance of the content.
Note that assigning differential importance to source con-
tent has often been used in studies of student summaries as a
reading or writing intervention (Brown and Day 1983). The
method captures alternate forms that express the same mean-
ing, which can be as various as a nominalization versus a
clause, as in “the condensation of water vapor into droplets”
versus “the water vapor condenses into water drops,” as well
as lexical variation, as in “Indian sovereignty allows them to
run casinos” versus “Reservations can set up casinos.” The

1Redundant information, which rarely appears in reference
summaries, is ignored.



pyramid content model is then used to annotate the content
in the target summaries, and the sum of the SCU weights
serves as a raw score. The score can be normalized analo-
gous to precision to measure how much of the content in a
summary is as important as it could be, or analogous to recall
to measure how much of the important content in an average
reference summary is expressed in the target summary.

Tests of the pyramid method indicate that the scores are
reliable given four to five reference summaries (Nenkova,
Passonneau, and McKeown 2007), and that the annotation
is reliable based on interannotator agreement, and on evi-
dence that independent application of the method by differ-
ent annotators produces virtually the same ranking of sys-
tems (Passonneau 2010). After 2004, the pyramid method
replaced an earlier method of content selection at the annual
Document Understanding/Text Analysis Conferences (DUC
and TAC) that have carried out large scale evaluations of
summarizers since 2000 (Nenkova and McKeown 2011).

The lack of automation is the biggest barrier to more
widespread use. An automated scoring procedure tested on
student summaries was found to correlate well with a highly
reliable main ideas score from a reading and writing inter-
vention, to correlate well with manual pyramid scores, and
to have adequate recall and precision of SCUs (Passonneau
et al. 2013). This automated scoring has recently been used
to evaluate an abstractive summarizer (Bing et al. 2015).
Full automation would facilitate more widespread use for
system development or student feedback. The method pre-
sented here is the first to automate both the construction of
pyramid models and assignment of pyramid scores.

In this paper, we propose PEAK (Pyramid Evaluation via
Automated Knowledge Extraction). Our approach to pyra-
mid construction relies on open information extraction to
identify subject-predicate-object triples, and on graphs con-
structed from the triples to identify and assign weights to
salient triples. For scoring, we rely on the Munkres-Kuhn
bipartite graph algorithm to find the optimal assignment of
model SCUs to target summaries. Our results show that
PEAK scores correlate very well with the manual Pyramid
method. We even encounter examples where PEAK fares
better than humans in assigning weights to SCUs.

2 Related Work
The traditional way to evaluate summaries is for human as-
sessors to judge each summary individually for aspects such
as readability and informativeness. To promote more con-
sistent ratings, from 2001 to 2003 the Document Under-
standing Conference relied on a single human-written model
summary as a yardstick, against which the human assessors
would assess the automatic summaries. This process of in-
dividually scoring every summary is, of course, very time-
consuming and does not scale well in the number of sum-
maries for a given summarization task. It was also found to
be overly sensitive to the choice of reference summary.

An alternative is to have humans produce a small set of
model summaries for the source text(s), and to rely on auto-
mated methods to score all candidate target summaries. Us-
ing multiple model summaries leads to more objective and
consistent content assessments. The well-known ROUGE

metric (Lin 2004) automatically compares n-grams in each
target with those of the model summaries, and can be applied
to a large number of summaries for a given summarization
task. Studies show that ROUGE fares reasonably well when
averaging across 10 or more summaries, as e.g. in summa-
rization system evaluation, but unfortunately tends not to be
reliable enough to assess an individual summary (Gillick
2011), as would be required, for instance, in a classroom
setting. Given the model summaries, one can easily create
summaries that obtain very high ROUGE scores but are non-
sensical (Gillick 2011). ROUGE scores of state-of-the-art
summarization systems match those of human-written sum-
maries, although it is quite apparent that the human ones are
of significantly higher quality (Gillick 2011).

The pyramid method was first proposed in Nenkova and
Passonneau (2004), with more detail in Nenkova, Passon-
neau, and McKeown (2007). The manual annotation cap-
tures underlying semantic similarity that ROUGE cannot
capture. It has high reliability on both pyramid creation and
target (peer) annotation (Passonneau 2010). A concurrent
automated approach to make summary evaluation more se-
mantic relied on latent semantic analysis (Steinberger and
Jez̆ek 2004). Unlike the pyramid method, it does not distin-
guish elements of content by importance.

Harnly et al. (2005) presented a method to automate pyra-
mid content scoring, given a pre-existing reference pyramid.
Specifically, they used similarity measures such as cosine
similarity and edit distance of n-grams in target summaries
compared with pyramid content units, and relied on Dy-
namic Programming to determine the overall solution. Their
method produced good system rankings, but absolute scores
were far lower than the scores from manual annotation, and
the SCU identification was poor.

Passonneau et al. (2013) presented an improved automatic
scoring method, again using dynamic programming but re-
lying on distributional semantics, and applied it to students’
summaries. Results were promising for providing relatively
accurate content feedback on individual summaries. Both
approaches to automated pyramid scores still first require
humans to manually create the pyramids from the model
summaries. Our method obviates the need for manually cre-
ated pyramids. Additionally, our experiments show that our
method obtains comparable results on the task of automatic
assessment compared to the previous work.

Louis and Nenkova (2009) proposed an automatic method
that attempts to entirely avoid any human involvement at all
by directly comparing the summary to be evaluated with the
original text. Their method works surprisingly well when
evaluating a system by averaging over many summaries, but
for individual input summaries, the authors often observed
low correlations with human-based assessments.

3 The PEAK Method
Overview
In the pyramid method, model summaries are annotated to
identify summary content units (SCUs), sets of text frag-
ments that express the same semantic content, typically a
single proposition. An SCU has at most one contributor



SCU 49 Plaid Cymru wants full independence
C1 Plaid Cymru wants full independence
C2 Plaid Cymru...whose policy is to...go

for an independent Wales within the EC
C3 calls by...(Plaid Cymru)...fully

self-governing Wales within the EC
C4 Plaid Cymru...its campaign for equal rights

to Welsh self-determination

Figure 1: Sample SCU from Pyramid Annotation Guide:
DUC 2006. Four model summaries contribute to an SCU
with the mnemonic label Plaid Cymru wants full indepen-
dence. (Note that the label captures what the annotator finds
in common across the contributors; it plays no role in use of
the pyramid for assessment).

phrase from each model summary. The SCU weight is the
number of contributor models, which ranges from 1 to N .
Figure 1 shows an example SCU from a webpage of guide-
lines used in DUC 2006. It shows that contributor phrases
to the same SCU can have distinct lexical and syntactic real-
izations of the same semantics. Here the weight is four. SCU
weight induces a partition over the SCUs from a given set of
reference summaries. With many models, it can be observed
that the sizes of the equivalence classes in descending or-
der of weight have a Zipfian distribution: a few SCUs occur
in all models, many occur in most, and a long tail of SCUs
occur in only one or two of the model summaries express
(Nenkova, Passonneau, and McKeown 2007).

To score a target summary against a pyramid, annotators
mark spans of text in the target that express an SCU, and the
SCU weights increment the raw score for the target. If dif-
ferent model summaries of the same source text are used, the
set of SCUs and their weights will be different. Three differ-
ent methods to test how many model summaries are required
for scores to be stable and reliable all provided evidence that
four to five models are sufficient (Nenkova, Passonneau, and
McKeown 2007). The raw pyramid scores have various nor-
malizations. A precision analog (used in DUC 2005 (Pas-
sonneau et al. 2005)) normalizes the summed weights of a
set of SCUs by the maximum sum that the same number
of SCUs can have, based on the number of SCUs of each
weight in the pyramid. A recall analog (used in DUC 2006
(Passonneau et al. 2006)) normalizes by the maximum sum
for the average number of SCUs in the model summaries. Fi-
nally, the harmonic mean of these two scores is an f-measure
analog (used in Passonneau et al. 2013).

In manual pyramid annotation, the annotators iterate over
the process until they are satisfied with the semantic content
for each unit, and the contributor assignments. PEAK is de-
signed to produce SCUs with the same properties: a coher-
ent semantics for each SCU expressed in each contributor,
and only one contributor per model summary. Summaries
typically have complex sentences, so one summary sentence
often contributes to more than one SCU. To detect candidate
propositions in the model sentences, we use open informa-
tion extraction to identify relation triples. We assess seman-
tic similarity of triples based on an analysis of a hypergraph
where the nodes are the elements of triples, the three nodes

of a triple are connected by a hyperedge, and nodes in dif-
ferent hyperedges can be connected by weighted edges that
represent their semantic similarity. The next three subsec-
tions present the hypergraph, show how it is used to generate
a pyramid, and explain how the resulting pyramid is used to
score target summaries.

SCU Identification

Due to the condensed nature of human summaries, they of-
ten contain complex sentences. For instance, consider: “The
law of conservation of energy is the notion that energy can
be transferred between objects but cannot be created or de-
stroyed.” It expresses two salient ideas: that energy can be
transferred between objects, and that energy cannot be cre-
ated. Open information extraction (Open IE) methods ex-
tract so-called subject-predicate-object triples, in which the
subject, predicate, and object are natural language phrases
extracted from the sentence, and which often correspond to
syntactic subject, predicate and object. For example, “These
characteristics determine the properties of matter”, yields
the triple 〈These characteristics, determine, the properties
of matter〉. While Open IE extracts individual propositions
from text, it can produce partial duplicates (see Figure 5) and
occasional noise, such as 〈the matter, itself, ∅〉. Our current
implementation relies on the ClausIE system (Del Corro and
Gemulla 2013) for Open IE.

Figure 2: Hypergraph to capture similarites between ele-
ments of triples, with salient nodes circled in red

As illustrated in Figure 2, we create a hypergraph G =
(V,H,E) where the nodes V correspond to all the subject,
predicate and object elements of the triples (inner boxes in
Figure 2), every set of nodes from the same triple (e.g., T1) is
connected by a hyperedge h ∈ H (shaded boxes), and nodes
not connected by a hyperedge can be connected by edges
e ∈ E. Edges e are weighted by similarity scores sim(u, v)
between two nodes u,v. These are obtained from Align, Dis-
ambiguate and Walk (ADW) (Pilehvar, Jurgens, and Navigli
2013), a state-of-the-art approach to semantic similarity of
text. A pair of nodes u and v will have an edge if and only
if their similarity sim(u, v) ≥ t. We picked the midpoint of
0.5 as the threshold t for two nodes to be more similar than
not.

In Figure 2, salient nodes have been circled, based on the
following definition.



Figure 3: SCU created by PEAK

Definition 3.1. The set of salient nodes VS is defined as

VS = {v ∈ V | deg(v) ≥ dmin}, (1)

where dmin is a pre-defined threshold, representing nodes
that have enough 1-degree neighbors to yield moderate- to
high-weight SCUs. The defined maximum weight is 4 (the
number of model summaries - 1), but in the experiments we
find the maximum weight can be greater than 4, due to rep-
etition in the model summaries. So we set dmin to 3, which
is slightly bigger than the midpoint of the regular maximum
weight, meaning that nodes with degree ≥ 3 are chosen as
salient. We believe this reflects the way humans make such
assessments.

As potential SCUs, we consider all triples where at least
two of the three elements are in VS. For the final set of SCUs,
we merge near-equivalent SCUs extracted from the same
sentence. This is because ClausIE’s open information ex-
traction method decomposes sentences into semantic triples
where one contains the other, as in 〈Energy, is, the property
of matter〉 and 〈Energy, is, the property〉 (see Figure 5).We
also merge similar triples from different sentences, as de-
scribed in Section 3.

Pyramid Induction
After the identification of salient triples, the next step is to
align triples extracted from distinct model summaries into
candidate SCUs. For this, we propose a matching algorithm
based on the notion of a similarity class.

Consider the example in Figure 3. Here, we have an SCU
induced from one of the salient triples: 〈Matter, is, all the
objects and substances〉. We treat each next salient triple in
turn as an anchor for an SCU, and identify contributors that
are semantically similar to the anchor by creating a similar-
ity class for each salient node of the triple.

Definition 3.2. The Similarity Class E(v) of a node v ∈ VS

is defined as

E(v) = {u ∈ V | (u, v) ∈ E}, (2)

i.e., the one-degree neighbors of v, or those nodes u ∈ V
such that u 6= v and sim(u, v) ≥ 0.5).

We create a similarity class Ei for every salient node in an
anchor triple. In our example, the subject and object nodes
are salient, and we create E1 for “Matter” and E2 for “all
the objects and substance”, as shown in Figure 4.

Figure 4: Similarity Class

A triple Ti from a summary Si when serving as an an-
chor triple is a candidate contributor to a potential SCU. The
similarity classes of the nodes in Ti provide a mechanism
to find additional contributor triples from model summaries
Sj distinct from Si. Any sentence from a model summary
Sj that yields a triple Tj such that two nodes u, v in Tj are
in distinct similarity classes Ei and Ej for anchor Ti will
be a potential contributor. Any given model summary must
contribute at most once to a given SCU. Therefore, for each
model summary Sj distinct from Si, we need to select the
best contributor triple Tj from possibly multiple candidates
extracted from Sj . We compute similarity scores for each
node in an anchor Ti to each member of the node’s similar-
ity class, and choose an optimal assignment based on maxi-
mizing the similarity of a candidate Tj to the anchor Ti.

Given an SCU anchor triple Ti with subject s, predicate p,
object o, the similarity classes for s, p and o are Es, Ep and
Eo. For every model summary, we only consider as potential
contributors ci those triples 〈si, pi, oi〉 where the majority,
i.e., two or three, of {si, pi, oi} are in at least two of Es, Ep

and Eo. From the set of potential contributors Tj for a given
summary Sj , we find the highest ranking contributor cmax:

max
i

∑
i similarityScore(xi, yi)

s.t. xi ∈ {si, pi, oi}
yi = s if xi ∈ Es

yi = p if xi ∈ Ep

yi = o if xi ∈ Eo

(3)

The total number of contributors for an SCU s provides
the weight ws of the SCU. For the example SCU in Fig-
ure 3, the weight of the candidate SCU is 4 because there
are 4 contributors, including the anchor. For convenience,
we represent an SCU as its anchor and its weight, omitting
the list of contributors that would appear in the manual an-
notation. Note that each next contributor triple to a candidate
SCU has a turn as an anchor. For a candidate SCU that has
n contributors, there will be at least n variants of the same



SCU. We merge similar candidate SCUs into a single SCU
using Algorithm 1. At this stage of pyramid construction,
the goal is a high precision of hypothesized SCUs, both in
the total number of SCUs and in their weights. The value
of T1 affects both outcomes, which are interdependent. We
experimented with values of 0.7 and below and found that at
0.7, there were too few SCUs and at 0.9, the SCU weights
were too low. So in our experiments, T1 is fixed at 0.8.

Algorithm 1 Merge similar SCUs
1: procedure MERGE(SCU anchors, weights)
2: set a graph G whose nodes are all SCU anchors
3: set threshold T1

4: for each node anchorm do
5: for each node anchorn do
6: calculate similarityScorem,n

7: if similarityScorem,n ≥ T1 then
8: add edge between anchorm and anchorn
9: mergedSCU ← the connected component in G

10: mergedWeight← max. weight of connected component
11: Return mergedAnchor, mergedWeight

Automated Scoring of Summaries
We can now use the pyramids created by PEAK to score
target summaries written by humans (e.g., students) or ma-
chines. For this, we again use our semantic triple-based for-
malism. One advantage of such a formalism is that such an
explicit representation can support the generation of assess-
ment feedback, as well as any other downstream processes
that may benefit from such information. For approaches
based on distributional semantics, such as the matrix-based
one of Passonneau et al. (2013), this may be more challeng-
ing.

Figure 5: Open Information Extraction from target sum-
maries

We again rely on open information extraction using

ClausIE to obtain triples from the target summaries. Fig. 5
shows a target summary, and a list of triples along with the
sentence number for each triple. The three parts of the triple
(subject, predicate, and object) are concatenated into a sin-
gle string, called a label. A target summary will have one
label for each triple.

Recall that our pyramid model consists of s SCUs (an-
chors) with associated weights ws. Every target summary
label t is compared with every SCU s in the automatically
generated pyramid. We again use ADW for the similarity
computation. An SCU s here may be a merged one, so it
may contain several triples, possibly with distinct weights.
We compare t with all the triples in s, storing their simi-
larity scores. Finding the maximal score for a target sum-
mary and ensuring that every t is matched to at most one
s amounts to solving a maximal matching problem. We use
the Munkres-Kuhn algorithm, as described in Algorithm 2.
In our experiments, T is fixed to 0.6.

Algorithm 2 Computing scores for target summaries
1: procedure SCORE(target summary sum)
2: for each sentence s in sum do
3: Ts ← triples extracted from s

4: for each triple t ∈
⋃

Ts do
5: for each SCU s with weight w do
6: m← similarity score between t and s
7: if m ≥ T then
8: W [t][s]← w . store weight
9: S←Munkres-Kuhn (Hungarian) Algorithm(W )

10: Return S

4 Experiments
Student Summaries
Our experiments focus on a student summary dataset from
Perin et al. (2013) with twenty target summaries written by
students. For this data, the study by Passonneau et al. (2013)
had produced five reference model summaries, written by
proficient native speakers of English, and two manually cre-
ated pyramids, each from a different annotator. We use the
reference summaries as input to PEAK in order to have it
automatically generate a pyramid P. Subsequently, this pyra-
mid is used to score the twenty student summaries. We com-
pare the automatically generated scores with the original
scores for those summaries produced by humans, as well as
with previous automatic algorithms. For the score compari-
son, we use the raw (non-normalized) scores.

Table 1 gives the correlations between scores based on P
and scores based on one of the two manual pyramids P1 and
P2, which were created by different annotators who worked
independently with the same five reference summaries.

We see that PEAK produces very strong results using
an entirely automatically generated pyramid. The study by
Passonneau et al. (2013) evaluated a series of algorithms
with different parameter settings, obtaining Pearson’s corre-
lations between 0.71 and 0.93. However, their method starts
off with the manually created pyramids and only performs
the scoring automatically. For comparison, we re-ran PEAK



using the manual pyramids. In Table 1, we also list corre-
lation scores based on P2 (on P1 the results are similar, but
slightly lower, as our algorithm performs best with a some-
what larger number of SCUs).

P1 + M. Scoring P2 + M. Scoring
P + A.Scoring 0.8263 0.7769
P2 +A. Scoring 0.8538 0.8112
P1 + M. Scoring 1 0.8857

Table 1: Pearson’s correlations between scores based on
PEAK’s pyramid P as well as the two human pyramids P1,
P2, with either manual or automatic scoring.

Analysis. For further analysis, we compared the different
pyramids themselves. Note that even different human ex-
perts may create quite distinct pyramids, but the final scores
and ranks can be consistent (Passonneau 2010). When com-
paring the two manual pyramids P1 and P2, we find that
they are indeed rather dissimilar. P1 has 34 SCUs but P2 has
60 SCUs. Still, the Pearson’s correlation score between the
manual scores based on P1 vs. P2 is 0.8857.

Figure 6: Histogram of weight differences between P1 and
P2, P1 and P, P2 and P for every anchor

PEAK’s pyramid P consists of 80 SCUs with 156 anchors.
The counts of weight differences between P1 and P2, P1
and P, P2 and P for every anchor is depicted in Fig. 6. We
find that PEAK identifies surprisingly many of P1’s SCUs.
Among the 34 SCUs in P1, 32 are matched, for a recall
of 94.12%. For P2, the overall recall is just 56.7%. How-
ever, for the SCUs with weight 5, 4, or 3 in that pyramid,
recall is 91.30%. We mainly miss SCUs with weights of 2
or 1. Fortunately, these lower-weight SCUs are less signif-
icant for scoring and ranking. Additionally, PEAK’s pyra-
mid contains other SCUs with weight 2 and 1 not consid-
ered noteworthy in the manual pyramids. While this results

in low precision scores, a detailed analysis of the weight dif-
ferences reveals that the pyramids are not overly dissimilar.
Most of the extra SCUs have a weight of just 1 and hence
do not affect the overall ranking. Given the profound differ-
ences between the two manual pyramids, we see that direct
comparisons between pyramids are not necessarily signifi-
cant. Instead, the correlation scores reported above appear
more meaningful.

Studying PEAK’s output in more detail, we observed fur-
ther benefits of our approach. Relying on Open IE for ex-
traction enables us to cope with multi-faceted sentences, for
which we may obtain multiple extractions that constitute
separate SCUs. Consider, for instance, “The law of conser-
vation of energy is the notion that energy can be transferred
between objects but cannot be created or destroyed.” From
this sentence, we obtain both 〈energy, can not be, created〉
as well as 〈energy, can be transferred, between objects〉 as
SCUs.

In a few cases, the weights obtained by our approach turn
out to be even more accurate than those from humans. For
instance, PEAK chooses an SCU 〈Matter, is, all the objects
and substances〉, which matches SCU “Matter is what makes
up all objects or substances” in a human pyramid. Compar-
ing the two, PEAK’s SCU lacks one contributor from the
sentence “Matter is anything that has mass and takes up
space (volume)”. However, PEAK instead adds the corre-
sponding triple to another SCU 〈Matter, can be measured,
because it contains volume and mass〉. The latter appears to
be a much closer match.

Machine-Generated Summaries
For further validation, we also conducted an additional ex-
periment on data from the 2006 Document Understanding
Conference (DUC) administered by NIST (“DUC06”). The
original data consists of twenty parts, each of which contain
four reference summaries and 22 machine-generated sum-
maries with manual scores. Unfortunately, this data contains
numerous inaccuracies, requiring manual cleaning. To cre-
ate an evaluation dataset, we randomly chose one of the
twenty parts and asked annotators to follow a set of guide-
lines to correct the original annotations.2

We evaluate PEAK on this data by generating a pyramid
based on the four reference summaries, which is then used to
score the twenty-two machine-generated summaries. These
scores from PEAK are then compared with the manual ones.

The Pearson’s correlation score between PEAK’s scores
and the manual ones is 0.7094.

5 Conclusion
In this paper, we have proposed the first fully automatic ver-
sion of the pyramid method. Our method not only assesses
target summaries but also generates the pyramids automat-
ically. We rely on open information extraction to obtain a
more accurate picture of the semantics of sentences, score
similarities between nodes in a graph to determine salient
SCUs, and develop an approach based on similarity classes

2This data is available from http://www.larayang.
com/peak/.



to assign the weights for SCUs. Experiments show that our
SCUs are very similar to those created by human annotators.
Additionally, we present a method for assessing target sum-
maries automatically, again obtaining a high Pearson corre-
lation with human assessors. A distributable code package is
available at http://www.larayang.com/peak/.

In terms of future work, we intend to refine the pyra-
mid induction process by handling additional phenomena.
For instance, coreference resolution and ideas from seman-
tic parsing (Tandon et al. 2015) could expose further con-
nections between sentences during the information extrac-
tion and merging stages.

Overall, our research shows great promise for automated
scoring and assessment of manual or automated summaries,
opening up the possibility of wide-spread use in the educa-
tion domain and in information management.
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